首页> 外文OA文献 >TARCO: Two-Stage Auction for D2D Relay Aided Computation Resource Allocation in Hetnet
【2h】

TARCO: Two-Stage Auction for D2D Relay Aided Computation Resource Allocation in Hetnet

机译:TaRCO:D2D中继辅助计算资源的两阶段拍卖   Hetnet的分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In heterogeneous cellular network, task scheduling for computation offloadingis one of the biggest challenges. Most works focus on alleviating heavy burdenof macro base stations by moving the computation tasks on macro-cell userequipment (MUE) to remote cloud or small-cell base stations. But theselfishness of network users is seldom considered. Motivated by the cloud edgecomputing, this paper provides incentive for task transfer from macro cellusers to small cell base stations. The proposed incentive scheme utilizes smallcell user equipment to provide relay service. The problem of computationoffloading is modelled as a two-stage auction, in which the remote MUEs withcommon social character can form a group and then buy the computation resourceof small-cell base stations with the relay of small cell user equipment. Atwo-stage auction scheme named TARCO is contributed to maximize utilities forboth sellers and buyers in the network. The truthful, individual rationalityand budget balance of the TARCO are also proved in this paper. In addition, twoalgorithms are proposed to further refine TARCO on the social welfare of thenetwork. Extensive simulation results demonstrate that, TARCO is better thanrandom algorithm by about 104.90% in terms of average utility of MUEs, whilethe performance of TARCO is further improved up to 28.75% and 17.06% by theproposed two algorithms, respectively.
机译:在异构蜂窝网络中,用于计算卸载的任务调度是最大的挑战之一。大多数工作着重于通过将宏小区用户设备(MUE)上的计算任务移至远程云或小型小区基站来减轻宏基站的繁重负担。但是很少考虑网络用户的自私。受云边缘计算的推动,本文为从宏蜂窝用户到小型蜂窝基站的任务转移提供了激励。所提出的激励方案利用小型小区用户设备来提供中继服务。计算分流的问题被建模为两阶段拍卖,具有共同社会特征的远程MUE可以组成一个小组,然后通过小型蜂窝用户设备的中继购买小型蜂窝基站的计算资源。名为TARCO的两阶段拍卖计划有助于最大程度地提高网络中买卖双方的效用。本文还证明了TARCO的真实性,个人合理性和预算平衡。此外,提出了两种算法来进一步完善TARCO的网络社会福利。大量的仿真结果表明,在MUE的平均效用方面,TARCO比随机算法要好约104.90%,而所提出的两种算法分别将TARCO的性能分别提高了28.75%和17.06%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号